
IRREDUCIBLE HOLOMORPHIC SYMPLECTIC MANIFOLDS

LISA MARQUAND

Abstract. These notes are lecture notes for a series of two lectures given

following the paper Variétés Kāhleriennes dont la Premiére classe de Chern
est nulle by Arnaud Beauville. The goal of the lectures was to show that S[n]

are examples of an irreducible holomorphic symplectic manifold, where S is a
K3 surface. For more details and references, we refer the reader to Beauville’s

original paper.

1. Introduction

Our main goal is to understand Beauville’s construction of examples of irre-
ducible holomorphic symplectic manifolds. We will first try to motivate the exis-
tence of such manifolds, illustrating them as one of the three building blocks that
make up compact, complex Kāhler manifolds with trivial first chern class. We will
review examples of holomorphic symplectic manifolds,especially in the compact di-
mension 2 case. Our next goal will be to exploit the geometry of the Hilbert scheme
of n points to construct a holomorphic symplectic structure on S[n] when S is a
surface with trivial canonical bundle. In particular, when S is a K3 surface, we
will show that such a structure is unique, and that S[n] is simply connected.

1.1. Motivation and definition. Let X be a compact, Kāhler manifold with
c1(X) = 0. A famous result is that X is made up of three building blocks (up to a
finite cover). We have the following structure theorem:

Theorem 1.1 (Structure Theorem). Let X be as above. Then:

(1) The universal cover X̃ of X is

X̃ ∼= Ck ×
∏

Vi ×
∏

Xj ,

where
(a) Vi is a projective, simply connected manifold of dimension at least 3,

with KVi
∼= OVi and H0(Vi,Ω

p) = 0 for 0 < p < mi.
(b) Xj is an irreducible holomorpic symplectic manifold.
This decomposition is unique up to ordering.

(2) There exists a finite étale covering X ′ → X where

X ′ ∼= T ×
∏

Vi ×
∏

Xj

where T is a complex torus.

The Vi in the decomposition are sometimes referred to as strict Calabi-Yau; we
won’t mention them in the rest of these notes.
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Let us now define irreducible holomorphic symplectic manifolds - this will follow
after several definitions. Let X be a complex manifold of dimension 2n, and TX

denote the holomorphic tangent bundle of X. Recall that a holomorphic 2-form
ω on X is nondegenerate at a point p ∈ X if the alternating form ω(p) is non-
degenerate on TpX. We see that ωn(p) is no-zero at p.

Definition 1.2. LetX be a complex manifold. A holomorphic symplectic structure
on X is a closed, holomorphic 2-form on X that is non-degenerate at every point.
We usually denote this form by ω. We say that X is a holomorphic symplectic
manifold.

Remark 1.3. The existence of such a structure implies that the dimension of X is
even, i.e dimC X = 2n, and the canonical bundle is trivial, KX

∼= OX .

Remark 1.4. Let B ⊂ X be a submanifold of codimension at least 2. Then any
holomorphic symplectic structure ω on X \ B extends uniquely to a holomorphic
symplectic structure on X. Indeed, by Hartog’s theorem ω extends to a 2-form
ω̄ on X. The divisor of ω̄n is contained in B, thus must be 0, and hence ω̄ is
non-degenerate.

Let us exhibit some examples of holomorphic symplectic manifolds:

(1) The cotangent bundle of any complex ariety T ∗X is holomorphic symplec-
tic.

(2) Let Y be a complex manifold of dimension 2n, and ω any closed 2-form on
Y such that ωn ̸= 0. Then ω induces a holomorphic symplectic structure
on Y \ div(ωn).

(3) The only compact, 2-dimension examples are complex tori, andK3 surfaces.

Definition 1.5. Let X be a compact, kāhler manifold. We say that X is a irre-
ducible holomorphic symplectic manifold if:

(1) there exists a unique holomorphic symplectic structure ω on X.
(2) X is simply connected.

Remark 1.6. The definition is motivated by differential geometry, and has an equiv-
alent definition: X admits a kāhler metric whose holonomy group is Sp(n).

A K3 surface is thus the only example in dimension 2. Our main goal is to
construct examples of irreducible holomorphic symplectic manifolds in higher di-
mensions.

2. The Hilbert Scheme of n points

In this section, we let S be any compact projective surface.

2.1. The symmetric product. Let Sn := S × · · · × S be the product of n copies
of a surface S. Consider the natural quotient map π : Sn → S(n) := Sn/Σn, where
Σn is the symmetric group of n elements, acting on Sn by permuting the factors.
The variety S(n) is singular, with quotient singularities. We will be interested in
the local structure.

Example 2.1. Let us compute (C2)2. The symmetric group is just generated by
an involution ι switching the two factors: ι : (a, b), (c, d) 7→ (c, d)(a, b). Consider
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the change of co-ordinates:

w = a+ c

x = b+ d

y = a− c

z = b− d.

In these new co-ordinates, the involution is given by ι : (w, x, y, z) 7→ (w, x,−y,−z),
and so ι = idC2 × (−idC2). We write the ring of regular functions on (C2)(2) as the
invariant part of the ring of regular functions on C2 × C2, we see that this is:

C[w, x, y2, z2, yz] ∼= C[w, x]⊗ C[u, v, t]/(t2 − uv).

Thus we can identify (C2)(2) with C2 ×Q, where Q is the quadric cone given as
{t2 − uv = 0} ⊂ C3.

2.2. The Hilbert Scheme of n points of a surface. We will now give a some-
what vague definition of the Hilbert scheme X [n]; for our purposes, we will only
require certain facts about this scheme which we will soon state.

Definition 2.2. Let X be a smooth projective variety. Then X [n] is a variety that
parametrises the subschemes of X of length n.

Let S now be a smooth projective surface. We will use several facts - we will try
to explain and motivate as we go.

(1) S[n] is an irreducible, smooth variety of dimension 2n, called the Hilbert
scheme of n points on S.

(2) There exists a morphism ϵ : S[n] → S(n) called the Hilbert-Chow morphism,
maps a subscheme

Z 7→
∑
p∈S

lengthp(Z)p.

Moreover, the map ϵ is a resolution of singularities of S(n).
(3) Let

∆ij := {(x1, . . . xn) ∈ Sn | xi = xj} ⊂ Sn,

and let ∆ := ∪i,j∆ij . Then S(n) is singular along D := π(∆), and ϵ−1(D)
is an irreducible divisor E.

Example 2.3. Let us consider S[2]. Notice that Sing(S(2)) = {2x | x ∈ S} = D.
In this case, one can define directly: S[2] = BlDS(2).

(4) Consider the subset D∗ ⊂ D, where

D∗ := {2x1 + x2 + · · ·+ xn−1 | xi are distinct }.
Let

S
(n)
∗ := (S(n) \D) ∪D∗,

where we have removed the singular locus, and added back in the locus
parametrising 2-collisions. Put

S
[n]
∗ := ϵ−1(S

(n)
∗ ), Sn

∗ : +π−1(S
(n)
∗ ).

Condition (3) ensures that S[n] \ S
[n]
∗ is a closed subspace of S[n] of codi-

mension 2.
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By Remark 1.4, in order to construct a holomorphic symplectic structure on S[n], it

suffices to construct such a structure on S
[n]
∗ , which has been designed to be easier

to work with. In order to see this, we shall discuss the restricted Hilbert-Chow
morphism

ϵ : S
[n]
∗ → S

(n)
∗ .

(5) Notice that S
(n)
∗ has two strata - the smooth locus parametrising n distinct

points X1 + · · ·+ xn, and the open locus where two of these points collide:
(2x1 + . . . xn−1). Locally near one of the points 2x1 +x2 + . . . xn−1, we can

identify S
(n)
∗ with

(C2)(2) × C(2n−2).

From Example 2.1, we can conclude that (S
(n)
∗ , D∗) is locally isomorphic

to (Q× C2n−2, q × C2n−2), where q ∈ Q is the vertex of the cone.

(6) The map ϵ : S
[n]
∗ → S

(n)
∗ is identified with the blow up of D∗ in S

(n)
∗ .

(7) Let ∆∗ := ∆ ∩ Sn
∗ ; notice that this is now smooth of codimension 2. Let

η : Bl∆∗S
n
∗ → Sn

∗

be the blow up of ∆∗; denote by Eij = η−1((∆ij)∗) the exceptional divisors.
Notice that the action of Σn extends to Bl∆∗S

n
∗ . We can identify

Bl∆∗S
n
∗ /Σn = S

[n]
∗ ,

and we have the following diagram:

(2.4)

Bl∆∗S
n
∗ Sn

∗

S
[n]
∗ S

(n)
∗

η

ρ π

ϵ

3. S[n] is an irreducible holomorphic symplectic manifold

Our main goal of this section is to prove that S[n] is an irreducible holomorphic
symplectic manifold when S is a K3 surface. First, we will show that if S has trivial
canonical bundle, then there exists a holorphic symplectic structure on S[n]. Fol-
lowing this, we will relate H2(S[n],C) to that of H2(S,C); using this, we shall show
this structure is unique when S is a K3 surface. We will finally state a topological
result which allows us to conclude that S[n] is in this case simply connected.

3.1. The holomorphic symplectic structure.

Proposition 3.1. Let S be a complex projective surface with KS
∼= OS. Then S[n]

admits a holomorphic symplectic structure.

Proof. We will construct a nondegenerate holomorphic 2-form on S
[n]
∗ . By Remark

1.4, it will extend to a holomorphic symplectic structure on S[n].
Let τ be a nondegenerate holomorphic 2-form on S, the existence of which is

guaranteed by the trivial canonical bundle condition. Let τ̃ =
∑n

i=1 pr
∗
i τ , where

pri : Sn → S is the projection to the ith factor. This defines a nondegenerate
holomorphic 2 form on Sn

∗ . Consider η∗τ̃ on Bl∆∗S
n
∗ . Since τ̃ is invariant under

the action of Σn, the same holds for η∗τ̃ . Since S
[n]
∗ is the quotient of Bl∆∗S

n
∗

by this finite group action, the invariant 2-forms of Bl∆∗S
n
∗ are identified with the



5

2-forms of S
[n]
∗ . In particular, there exists a holomorphic 2-form ω on S

[n]
∗ such

that

η∗τ̃ = ρ∗ω.

It remains to show that ω is non-degenerate. The map ρ is a ramifies covering that
is ramified along the exceptional divisors Eij . Thus we have that

div(ρ∗ωn) = ρ∗div(ωn) +
∑

Eij .

On the other hand, we know that

div(ρ∗ωn) = div(η∗τ̃) =
∑

Eij .

It follows that div(τn) = 0, and extending τ defines the holomorphic symplectic
structure on S[n]. □

3.2. Uniqueness of the holomorphic symplectic structure. Recall that for a
smooth projective variety X,

H2(X,C) = H2,0(X)⊕H1,1(X)⊕H0,2(X)

where Hp,q(X) ∼= Hq(X,Ωp
X).

Lemma 3.2. Let S be a compact projective surface, n ≥ 2.

(1) The induced map

ϵ∗ : H2(S(n),C) → H2(S[n],C)

is injective on Hodge structures, and we have that

H2(S[n],C) = Imϵ∗ ⊕ C[E].

(2) The map π∗ : H2(S(n),C)) → H2(Sn,C) induces an isomorphism

H2(S(n),C) ∼= H2(Sn,C)Σn .

(3) If further H1(S,C) = 0, then π∗ induces an isomorphism of Hodge struc-
tures of

H2(S(n),C) ∼= H2(S,C).

Proof. (2) Since S(n) is the quotient of a projective variety by a finite group,
it satisfies Poincaré duality, and has a pure Hodge structure. This leads to
the assertion.

(1) We again replace S[n] by S
[n]
∗ , and Sn by Sn

∗ ; this does not modify the
second cohomology. Consider the diagram induced by 3.3:

(3.3)

H2(Bl∆∗S
n
∗ )

Σn H2(Sn
∗ )

Σn

H2(S
[n]
∗ ) H2(S

(n)
∗ )

η∗

ρ∗

ϵ∗

π∗

where ρ∗, π∗ are bijective. Since η is a blow up of a smooth variety in a
smooth center, we see that

H2(Bl∆∗S
n
∗ )

Σn ∼= Imη∗ ⊕
(∑

C[Eij ]
)Σn

∼= Imη∗ ⊕ C[E].
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(3) One can use the Kūnneth formula to expandH2(Sn,C) in terms ofH2(S,C)
due to the vanishing of H1(S,C). From this one can compute the invariant
piece under the action of Σn to see the result.

□

Corollary 3.4. Let S be a K3 surface. Then there is a unique holomorphic sym-
plectic structure (up to scaling) of S[n].

Proof. By Lemma 3.2, we see that

H2,0(S[n]) ∼= H2,0(S) ∼= C[τ ],
where τ is the unique holomorphic symplectic form on S. □

3.3. Simply connectedness. One can use the topological lemma below to con-
clude that S[n] is simply connected, we state for completeness.

Lemma 3.5. Let S be any projective surface, n ≥ 2.

(1) The induced map ϵ∗ : π1(S
[n]) → π1(S

(n)) is bijective.
(2) The induced map π∗ : π1(S

n) → π1(S
(n)) is surjective, and π1(S

(n)) is
isomorphic to the largest abelian quotient of π1(S).
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